Group theory
查看历史

In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right.

Related

An introduction to anti-homomorphisms of groups

It is known that the homomorphisms between group preserve products. However, the anti-homomorphisms between groups invert products in contrast to the homomorphisms. In this article, we briefly introduce the notion of anti-homomorphisms of groups, and we will study anti-homomorphisms of rings in the next article.1. Anti-homomorphisms of groups.In this section, all groups are not necessarily abelian. For simplicity, we will simply call anti-homomorphism instead of anti-homomorphism of groups.Definition 1. An anti-homomorphism $\phi:(A,\cdot) \rightarrow (B,\cdot)$ is a mapping $\phi : A \rightarrow B$ such that $\phi(x \cdot y) = \phi(y) \cdot \phi(x)$ for all $x, y \in A$.Anti-homomorphism preserves identity elements, inverses, and powers, which can be readily proved.Proposition 2. If $\phi: A \rightarrow B$ is an anti-homomorphism of groups, then $\phi(1) = 1$, $\phi(x^{−1}) = \phi(x)^{−1}$, and $\phi(x^{n}) = \phi(x)^{n}$ , for all $x\in A, n \in \mathbb{Z}$.Compared to monomorphisms, epimorphisms, and isomorphisms of groups, we could define anti-monomorphisms, anti-epimorphisms and anti-isomorphisms. Before that, first consider the following proposition:Proposition 3. If $\varphi$ is a bijective anti-homomorphism of groups, then its inverse bijection $\varphi^{−1}$ is also an anti-homomorphism of groups.Definition 4. An anti-monomorphism of groups is an injective anti-homomorphism of groups. An anti-epimorphism of groups is a surjective anti-homomorphism of groups. An anti-isomorphism of groups is a bijective anti-homomorphism of groups. Two groups $A$ and $B$ are called anti-isomorphic when there exists an anti-isomorphism $A\cong B$. If $f$ is an anti-isomorphism, then its inverse $f^{−1}$ is called its anti-inverse.Next, we define kernels and images of anti-homomorphisms.Definition 5. Let $\varphi : A\rightarrow B$ be an anti-homomorphism of groups. Then the kernel of $\phi$ is $$\textrm{Ker }\varphi:=\{a\in A\mid \varphi(a)=1\}.$$The image of $\phi$ is$$\textrm{Im }\varphi:=\{\varphi(a)\mid a\in A\}.$$We note some propositions about kernel, cokernel, and image of an anti-homomorphism of groups.Proposition 6. Let $\varphi:A\rightarrow B$ be an anti-homomorphism of groups. Then ${\rm{Ker}}\varphi$ is a normal subgroup of $A$ and ${\rm{Im}}\varphi$ is a subgroup of $B$.Proof. We just prove that $\textrm{Ker }\varphi$ as a subgroup of $A$ is normal. Since in Anti-homomorphism in Rings, we have $\varphi(x)=\varphi(y)$ if and only if $x-y\in\textrm{Ker }\varphi$ for any $x,y\in A$. Then $x\in\textrm{Ker }\varphi+y$ if and only if $x\in y+\textrm{Ker }\varphi$, which shows that $\textrm{Ker }\varphi$ is normal in $A$.Proposition 7. Let $\varphi:A\rightarrow B$ be an anti-homomorphism of groups. Then $\varphi$ is an anti-monomorphism if and only if ${\rm{Ker }}\varphi=0$. And $\varphi$ is an anti-epimorphism if and only if ${\rm{Coker}} \varphi=0$.
2024-04-25 21:12:15

关于抽象代数split exact sequence的拓展和相关练习

想知道关于split exact sequence的相关知识点以及练习题,或者有没有简单的(本科以内)关于如何用simple group来推导更高阶的群的文章
2024-12-02 18:51:43
Get connected with us on social networks! Twitter

©2024 Guangzhou Sinephony Technology Co., Ltd All Rights Reserved